Sequential Monte Carlo for counting vertex covers in general graphs

نویسندگان

  • Radislav Vaisman
  • Zdravko I. Botev
  • Ad Ridder
چکیده

In this paper we describe a Sequential Importance Sampling (SIS) procedure for counting the number of vertex covers in general graphs. The optimal SIS proposal distribution is the uniform over a suitably restricted set, but is not implementable. We will consider two proposal distributions as approximations to the optimal. Both proposals are based on randomization techniques. The first randomization is the classic probability model of random graphs, and in fact, the resulting SIS algorithm shows polynomial

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Counting Perfect Matchings in General Graphs

Counting perfect matchings has played a central role in the theory of counting problems. The permanent, corresponding to bipartite graphs, was shown to be #P-complete to compute exactly by Valiant (1979), and a fully polynomial randomized approximation scheme (FPRAS) was presented by Jerrum, Sinclair, and Vigoda (2004) using a Markov chain Monte Carlo (MCMC) approach. However, it has remained a...

متن کامل

Triangle counting in streamed graphs via small vertex covers

We present a new randomized algorithm for estimating the number of triangles in massive graphs revealed as a stream of edges in arbitrary order. It exploits the fact that graphs arising from various domains often have small vertex covers, which enables us to reduce the space usage and sample complexity of triangle counting algorithms. The algorithm runs in four passes over the edge set and uses...

متن کامل

Algorithms to Approximately Count and Sample Conforming Colorings of Graphs

Conforming colorings naturally generalize many graph theory structures, including independent sets, vertex colorings, list colorings, H-colorings and adapted colorings. Given a multigraph G and a function F that assigns a forbidden ordered pair of colors to each edge e, we say a coloring C of the vertices is conforming to F if, for all e = (u, v), F (e) 6= (C(u), C(v)). We consider Markov chain...

متن کامل

A bijection for plane graphs and its applications

This paper is concerned with the counting and random sampling of plane graphs (simple planar graphs embedded in the plane). Our main result is a bijection between the class of plane graphs with triangular outer face, and a class of oriented binary trees. The number of edges and vertices of the plane graph can be tracked through the bijection. Consequently, we obtain counting formulas and an eff...

متن کامل

Canonical Paths for MCMC: from Art to Science

Markov Chain Monte Carlo (MCMC) method is a widely used algorithm design scheme with many applications. To make efficient use of this method, the key step is to prove that the Markov chain is rapid mixing. Canonical paths is one of the two main tools to prove rapid mixing. However, there are much fewer success examples comparing to coupling, the other main tool. The main reason is that there is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistics and Computing

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016